

Fiber Optic Sensing for Railroad Infrastructure and Assets

Michael Montgomery *** AP Sensing

What is FOSA?

- The Fiber Optic Sensing Association is a non-profit industry association formed in 2017
- Provides education on the benefits of distributed fiber optic sensing technology:
 - Webinars
 - Videos
 - White papers
 - Developing standardized industry practices
 - Public policy advocacy
- Membership is open to companies globally who make, install, support and use distributed/quasi-distributed fiber optic sensors

Introducing Fiber Optic Sensing

What is Distributed Fiber Optic Sensing?

- Monitoring of fiber optic cables from a single location via pulsed laser light
- 24/7 Continuous Monitoring over long continuous distances
- 1,000's of sensing points high resolution with meter size localization potential

- Passive sensor: No power along asset
- Multiple applications possible in a single system
- Upgradeable technology without replacing sensor

Fiber Optic Sensing Applications

Transport Monitoring

Pipeline Heat Trace Monitoring

Third Party
Intrusion/Security

Geo-Technics

Pipeline Condition Monitoring

Oil & Gas In-Well Monitoring

Industrial Process Monitoring

Structural Health Monitoring

Power Cable Monitoring

Fire Detection

Applications in Railroads

Key benefits / Railroad applications

- Reliable
- Safe
- Retrofittable

- Economical
- Scalable
- Independent

How is this data extracted from a fiber?

Short video to illustrate concept

How can DFOS help Railroad Operators?

Non-Vital Train Tracking

- DAS tracks trains even in 'dark' territories without train detection
- The acoustic energy from the moving train excites the fiber, allowing the train 'signature' to be detected and followed

Train Tracking – Example

Train Tracking – waterfall & map view (at 8x speed)

Track Selective Train Tracking

a) Different Acoustic Fingerprints of Two Parallel Tracks

b) Track Selective Train Localization on Parallel Tracks.

Output Display

Security & Threat Detection

Rockfall and landslide – Case Study

 Rain within a canyon initiated a land slide

 Multiple landslide alarms raised by the DAS system to the dispatcher and announced over the voice radio

Fire Detection in Tunnels / Stations

- Fire localization with 3m accuracy
- Fast alarming < 1 min by using time differentials and not just static limits
- Cost efficient & reliable
- UL, FM, VdS approved
- Thousands of installations

Fire Detection in the Euro Tunnel is just one out of thousands of train, metro, main station projects around the world.

Example: Alarming within a zone

Asset Condition Monitoring

Asset condition can be monitored by FOS in support of condition based maintenance and as an aid to help prevent failures

- Railroad Assets
 - Rail defects
 - Track bed defects / subsidence
 - Overhead Electrification
- Rolling Stock
 - Wheel Defects, e.g. flat wheel

Track Defects - Example

 Regular impulse at a fixed point within the train signature – periodicity depends on axle spacing and speed

Wheel Defects - Example

 Regular impulse within the train signature, moving with the train Periodicity related to train speed and wheel diameter

Catenary Flashover

- Short Circuits in the overhead power line - power outage
- Inspection required to use track again

How can DFOS help?

- Detect and locate flashovers much more accurately – down to a few meter
- Less inspection time = Better track availability = \$\$\$ Saving

How simple is it to deploy Fiber Optic Sensing?

Summary of the Railroad Applications & Benefits of Fiber Optic Sensing

What are the Benefits?

Fiber Optic Sensing Association Connect and Protect

- Long reach spans greater than 80 km
- Entire length sensed in real time
- High spatial resolution thousands of sensing points
- Precise event location detection
- No risk of interference
- No infrastructure trackside, or onboard.
- Scalable solution

Per sensing point, there is no more economical way to monitor lengthy, critical assets

FOSA Members with Sensing Products

DAS

DSS

Thank You – Questions?

Visit our website at fiberopticsensing.org